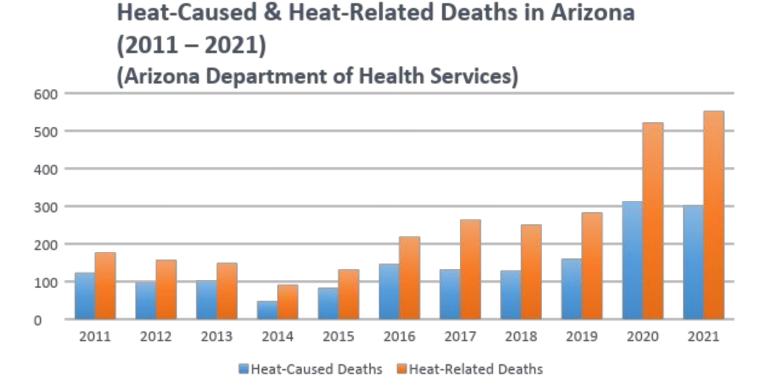
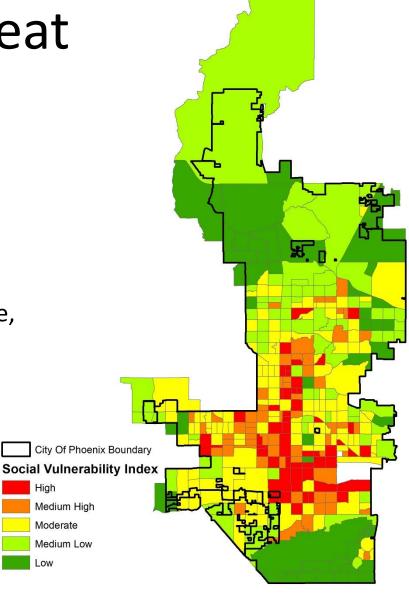

Personal Heat Exposure


Webinar Overview

Background Personal Heat Exposure Preliminary
Analysis / Data
Publication

3HEAT Study
Personal Heat Exposure
Dataset


Public Health Implications of Extreme Heat

- Extreme temperatures one of the leading weather-related causes of death in the US
- Extreme heat can affect the body's ability to regulate temperature, which can result in heat cramps, heat exhaustion, heatstroke, and hyperthermia.
- Extreme heat can also exacerbate chronic health conditions like cardiovascular, respiratory, cerebrovascular disease and diabetes (USGCRP, 2016)

Social Vulnerability to Extreme Heat

- Vulnerability Framework:
 - Adaptive Resources, Sensitivity, Exposure
- How do we tend to operationalize vulnerability?
 - Vulnerability Index
 - Input Data: sociodemographic, land cover/ land use, temperature, vegetation prevalence, health status
- Limitation of Indices
 - Vulnerability is a processes and not directly measurable
 - Incorporates very few proximate variables related to adaptive resources and sensitives

Social vulnerability index for Phoenix, AZ

What is Personal Heat Exposure

Personal Heat Exposure:

"We define **personal heat exposure as realized contact between a human and an indoor or outdoor environment** in which the air temperature, radiative load, atmospheric moisture content, and air velocity collectively pose a risk of increase in body core temperature, perceived discomfort, or both." — Kuras et al (2017)

ibutton temperature and humidity sensor

HOBO Pendant temperature / light sensor

Kestrel Drop temperature, humidity, and pressure sensor

Importance of Personal Heat Exposure

- Fixed-point weather stations are not very useful for approximating personal exposure (Hondula et al, 2021; Sugg et al, 2019; Martines-Nicolas et al, 2015; Kuras et al, 2015; Sugg et al, 2018)
- Better understand pathways that lead to heat-related illness
- Improved siting for changes to the outdoor environment (e.g. tree canopy cover)
- Useful for interventions that don't focus on changing outdoor temperature (e.g. indoor temperature)
 - On average Americans spend between 80% and 90% of their time indoors (Klepeis et al., 2001)

3HEAT Overview

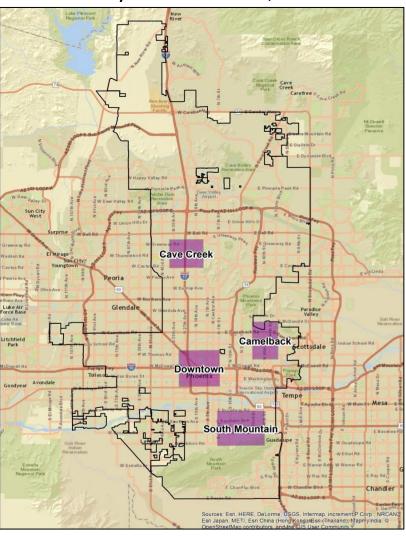
- Three City Heat and Electrical Failure Adaptation Study (3HEAT)
- Study Area: Phoenix, AZ, Detroit, MI, and Atlanta, GA
- Objective: investigates the social, environmental, and technological adaptations that affect health outcomes due to independent or coupled heat and power failure events

3HEAT Research Team

Phoenix – 3HEAT Data Collection

Phase 1

- Stratified random sample
- 163 door-to-door surveys
- Typical Survey Time: 20 mins
- Response Rate: 30%

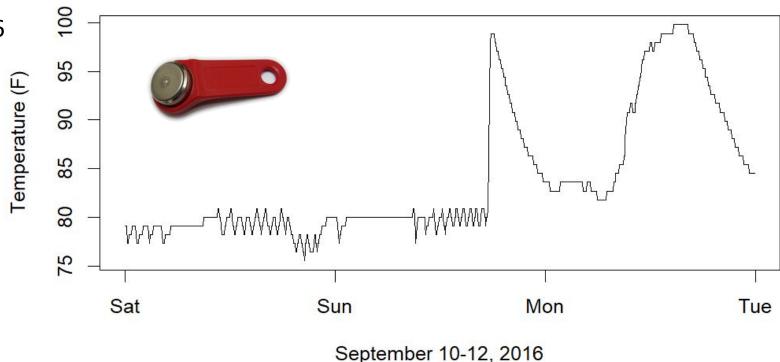

Asking residents about:

- 1. Access to and use of cooling resources
- 2. Constraints on cooling resources
- 3. Thermal preference
- 4. Demographics
- 5. Energy use
- 6. Prior experience with extreme heat

Phase 2

- 55 participants (subset of 163 Phoenicians surveyed for 3HEAT project).
- August 21 September 19, 2016
- Monitored indoor, outdoor, and personal temperature exposure

Study Area: Phoenix, AZ



Personal Temperature Exposure Data – iButton

- Hygrochron Temperature and Humidity iButtons (Model DS 1923-F5#, accuracy +/- 0.5°C
- Wore iButtons on the outside of their clothing
- Sampling temperature every 5 minutes

• Total number of observations = 1,966

Example iButton Data - AS402

Personal Temperature Exposure Data – Time Activity Diary (TAD)

LOCATION

Set of categories of indoor and outdoor locations

ACTIVITY LEVEL

Four point scale from 1 (sitting or lying down) to 4 (heavy exertion, can't have conversation)

THERMAL SENSATION

Nine point scale from -4 (very cold) to 4 (very hot)

COOLING METHODS

Twelve unique cooling methods. Participants could list any they used in a given time period

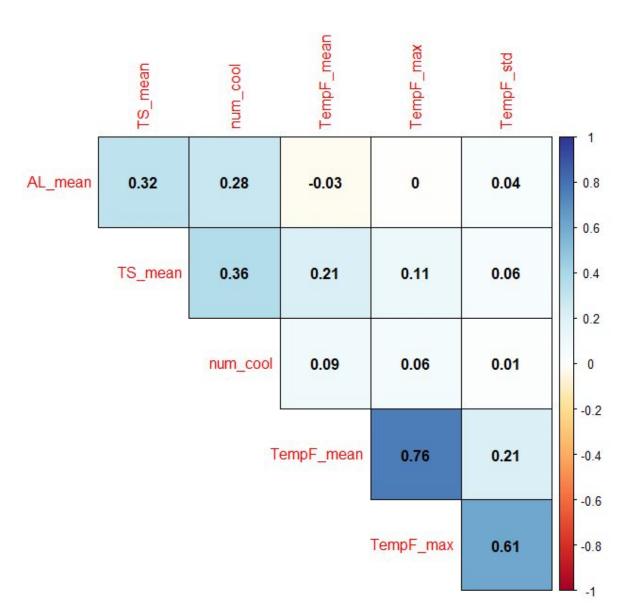
Time of Day	Location	Activity Level(s)	Cooling Method(s)	Thermal Sensation(s)	Had i- Button
	Indoor	1 = sitting or	0 = none	-4 = very cold	Y/N
	1 = home	lying down	Indoor	-3 = cold	20 000000000
	2 = friend's or relative's home	2 = light	1 = air	-2 = cool	
	3 = indoor workplace	exertion	conditioning	-1 = slightly cool	
	4 = store	(breathing	2 = evaporative	0 = neutral	
	5 = bar/restaurant	easy)	(swamp) cooler	1 = slightly warm	
	6 = office (e.g., doctor, etc.)	3 = moderate	3 = window/	2 = warm	
	7 = library	exertion	ceiling fan	3 = hot	
	8 = school/college	(breathing	4 = open windows	4 = very hot	
	9 = senior or rec center	harder)	5 = go to		
	10 = gym	4 = heavy	basement		
	11 = museum	exertion	6 = cool shower/		
	12 = movie theater	(can't have	bath		
	13 = casino	conversation)	Outdoor		
	14 = cooling center	AND 12000 11000 AND	7 = go in the		
	15 = church/house of worship		shade		
	Outdoor		8 = mister/		
	16 = car		sprinkler		
	17 = bus/train		9 = swimming or		
	18 = bike		boating		
	19 = motorcycle/scooter		Any Location		
	20 = outdoor workplace		10 = remove/		
	21 = yard		change clothes		
	22 = sidewalk		11= drink cool		
	23 = parking lot		beverage		
	24 = park		12 = cool skin with		
	25 = pool/beach/splash pad		water or		
	30 = traveled outside the city		compress		
	31 = traveled outside the		153		
	metro area				
SA	MPLE BELOW SAMPLE BEL	OW SAMPLE E	BELOW SAMPLE	BELOW SAMPLE BELOY	W
5-6:29 am	1	① 2 3 4	3, 4	-4-3-2-1 0 1 2 3 4	Y
5:30-7:07	22	1 2 3 4	0	-4-3 -2 -1 0 123 4	Υ
7:08-8:20	1	1 2 3 4	3, 4, 6	-4-3 -2 -1 0 1 2 3 4	Y
3:21-9:17	16	1 2 3 4	1, 3, 4	-4-3-2-1 0 0 2 3 4	Y
9:18-9:25		1 2 3 4	1	-4-3-2-1 0 1 2 34	Υ
1.26 0.22	22	1 2 2 1	0	122101221	V

Correlations between iButton and TAD

AL_mean: Average Activity Level

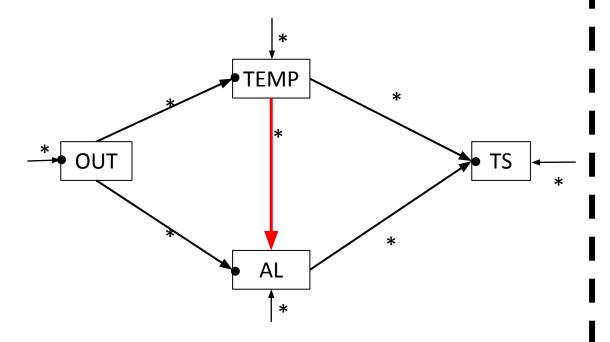
TS_mean: Average Thermal Sensation

Num_cool: Number of cooling behaviors

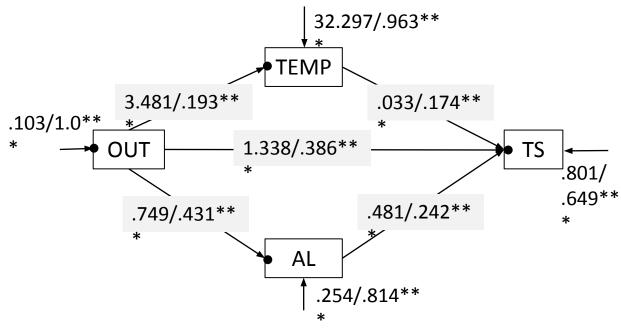

engaged in

TempF_mean: Average Temperature (°F)

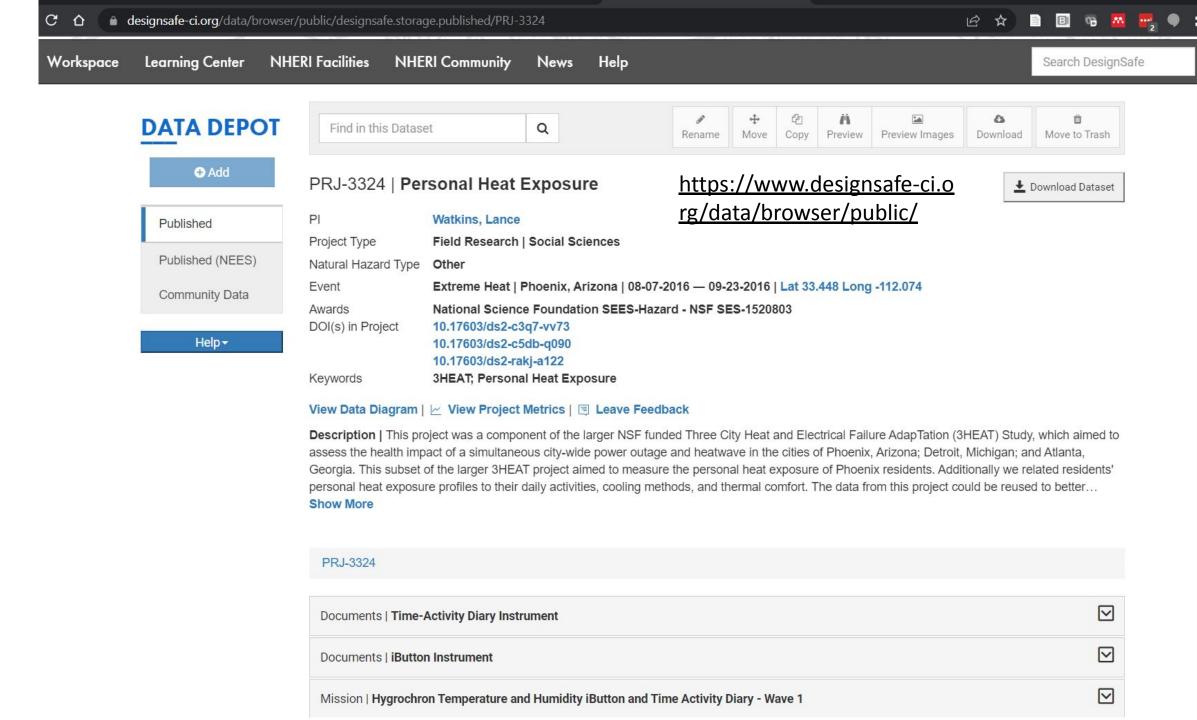
TempF_max: Maximum Temperature (°F)


TempF_std: Standard Deviation in

Temperature (°F)



Path Analysis - iButton and TAD


Initial Hypothesized Model

Final Hypothesized Model

Unstd/Std; *p < .05, **p < .01, ***p < .001

Q

Acknowledgements

- Natural Hazards Center Weather Ready Research Award Program
- National Oceanic and Atmospheric Administration(NOAA)
- CONVERGE + DesignSafe Training
- NSF Hazards SEES Award Number 1520803
- ASU team: Drs. Sharon Harlan, Matei Georgescu, and David Hondula, with Lance Watkins, Liza Kurtz, and Mary Wright.
- University of Michigan 3HEAT team: Drs. Marie O'Neill, Carina Gronlund, Larissa Larsen, and students and staff
- Georgia Tech 3HEAT team: Dr. Brian Stone, Dr. Fried Augenbroe, and students and staff
- The Urban Climate Research Center at ASU (<u>urbanclimate.asu.edu</u>)

Lance Watkins: lewatkin@asu.edu